Bernoulli Distribution in R - GeeksforGeeks (2023)

Bernoulli Distribution is a special case of Binomial distribution where only a single trial is performed. It is a discrete probability distribution for a Bernoulli trial (a trial that has only two outcomes i.e. either success or failure). For example, it can be represented as a coin toss where the probability of getting the head is 0.5 and getting a tail is 0.5. It is a probability distribution of a random variable that takes value 1 with probability p and the value 0 with probability q=1-p. The Bernoulli distribution is a special case of the binomial distribution with n=1.

The probability mass function f of this distribution, over possible outcomes k, is given by :

Bernoulli Distribution in R - GeeksforGeeks (1)

The above relation can also be expressed as:

Bernoulli Distribution in R - GeeksforGeeks (2)

In R Programming Language, there are 4 built-in functions to for Bernoulli distribution and all of them are discussed below.

dbern()

dbern( ) function in R programming measures density function of Bernoulli distribution.

Syntax: dbern(x, prob, log = FALSE)

Parameter:

  • x: vector of quantiles
  • prob: probability of success on each trial
  • log: logical; if TRUE, probabilities p are given as log(p)

In statistics, it is given by below formula:

Bernoulli Distribution in R - GeeksforGeeks (3)

Example:

R

# import Rlab library

library(Rlab)

# x values for the

# dbern( ) function

x <- seq(0, 10, by = 1)

# using dbern( ) function

# to x to obtain corresponding

(Video) Binomial Distribution in R | R Tutorial 3.1| MarinStatsLectures

# Bernoulli PDF

y <- dbern(x, prob = 0.7)

# plot dbern values

plot(y, type = "o")

Output:

Bernoulli Distribution in R - GeeksforGeeks (4)

pbern()

pbern( ) function in R programming giver the distribution function for the Bernoulli distribution. The distribution function or cumulative distribution function (CDF) or cumulative frequency function, describes the probability that a variate X takes on a value less than or equal to a number x.

Syntax: pbern(q, prob, lower.tail = TRUE, log.p = FALSE)

Parameter:

  • q: vector of quantiles
  • prob: probability of success on each trial
  • lowe.tail: logical
  • log.p: logical; if TRUE, probabilities p are given as log(p).

Example:

R

# import Rlab library

library(Rlab)

# x values for the

# pbern( ) function

x <- seq(0, 10, by = 1)

# using pbern( ) function

(Video) BINOMIAL DISTRIBUTION USING R PROGRAMING

# to x to obtain corresponding

# Bernoulli CDF

y <- pbern(x, prob = 0.7)

# plot pbern values

plot(y, type = "o")

Output:

Bernoulli Distribution in R - GeeksforGeeks (5)

The above plot represents the Cumulative Distribution Function of Bernoulli Distribution in R.

qbern()

qbern( ) gives the quantile function for the Bernoulli distribution. A quantile function in statistical terms specifies the value of the random variable such that the probability of the variable being less than or equal to that value equals the given probability.

Syntax: qbern(p, prob, lower.tail = TRUE, log.p = FALSE)

Parameter:

  • p: vector of probabilities.
  • prob: probability of success on each trial.
  • lower.tail: logical
  • log.p: logical; if TRUE, probabilities p are given as log(p).

Example:

R

# import Rlab library

library(Rlab)

# x values for the

# qbern( ) function

(Video) Binomial calculations in R

x <- seq(0, 1, by = 0.2)

# using qbern( ) function

# to x to obtain corresponding

# Bernoulli QF

y <- qbern(x, prob = 0.5,lower.tail = TRUE, log.p = FALSE)

# plot qbern values

plot(y, type = "o")

Output:

Bernoulli Distribution in R - GeeksforGeeks (6)

rbern()

rbern( ) function in R programming is used to generate a vector of random numbers which are Bernoulli distributed.

Syntax: rbern(n, prob)

Parameter:

  • n: number of observations.
  • prob: number of observations.

Example:

R

# import Rlab library

library(Rlab)

set.seed(98999)

(Video) Binomial Distribution Tutorial using R studio

# sample size

N <- 1000

# generate random variables using

# rbern( ) function

random_values <- rbern(N, prob = 0.5)

# print the values

print(random_values)

# plot of randomly

# drawn density

hist(random_values,breaks = 10,main = "")

Output:

[1] 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1

[68] 1 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1

[135] 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0

[202] 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0

[269] 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0

[336] 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0

[403] 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1

[470] 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0

[537] 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0

[604] 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1

[671] 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1

[738] 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1

[805] 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1

[872] 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0

[939] 1 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1

Bernoulli Distribution in R - GeeksforGeeks (7)

The above plot represents Randomly Drawn Numbers of Bernoulli Distribution in R.

(Video) Statistics with R Programming Part 3 | Poisson Distribution Tutorial | Data Science Tutorial


My Personal Notesarrow_drop_up

Videos

1. Introduction to Binomial Distributions
(Brian Amedee)
2. R Programming Binomial Distribution
(DevNami)
3. THE BINOMIAL DISTRIBUTION MODEL
(Shepherd Magwegwe)
4. Variant Calling Algorithm based on Binomial distribution
(Nikola Aleksić)
5. 13: the binomial distribution. COMS10014 probability and combinatorics.
(Conor Houghton)
6. binomial code
(Joe Guinness)

References

Top Articles
Latest Posts
Article information

Author: Otha Schamberger

Last Updated: 28/09/2023

Views: 5295

Rating: 4.4 / 5 (75 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Otha Schamberger

Birthday: 1999-08-15

Address: Suite 490 606 Hammes Ferry, Carterhaven, IL 62290

Phone: +8557035444877

Job: Forward IT Agent

Hobby: Fishing, Flying, Jewelry making, Digital arts, Sand art, Parkour, tabletop games

Introduction: My name is Otha Schamberger, I am a vast, good, healthy, cheerful, energetic, gorgeous, magnificent person who loves writing and wants to share my knowledge and understanding with you.